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Abstract

Pathologies that affect the vocal tract are known to
alter the quality of the patients’ speech in distinguishable
or more subtle ways. This paper presents a non-invasive
multi-class automatic vocal pathology detector that out-
performs the mean accuracy of medical professionals by
analyzing the less distinguishable features of pathologi-
cal voices. The proposed system uses a deep learning
algorithm capable to analyze multiple pathologies based
on speech signals that consist in simple vowel utterances
recorded in either audio or electroglottographic (EGG)
format. The classifier obtained 86% and 75% accuracies
for the audio and EGG separately, while their simulta-
neous analysis yielded 95% accuracy.
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1. Introduction

1.1. Applicability, motivation and objective
The latest advancements in technology have driven massive changes and yielded multiple develop-

ment opportunities in the healthcare system. Such opportunities include automatic diagnosis assistants
that can aid medical professionals to faster identify symptoms and pathologies with improved accuracy.
The pandemic of COVID-19 underlined the benefits of remote pathology diagnosis, hence the usefulness
of an automatic pathology diagnosis system. Besides its uses in a pandemic context, an automatic voice
pathology detection system can prove beneficial to automatically redirect patients to the corresponding
medical speciality in medical call centers, thus reducing the queue waiting time.

Pathological voice can indicate a wide variety of underlying causes, sometimes on its own or alongside
other symptoms. For instance, a dysphonic (hoarse-sounding) voice can be the result of multiple causes.
Therefore arises the utility of integrating the proposed solution into a system composed of multiple
classifiers that output a final diagnostic based on a cumulated analysis of the functions of multiple
organs.

The motivation to implement an automatic voice pathology claassifier arised from its cost-effectiveness
and the need of faster and more accurate diagnostics, doubled by the lack of research in the domain of
multi-class voice pathology detection based on a multi-modal approach of the simultaneous analysis of
multiple speech signal recording formats.

The main objective of this work is to outperform the average 71.4% accuracy of medical personnel.
[1]
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1.2. Related work
The majority of research in vocal pathology detection was conducted on problems of binary clas-

sification, but significant progress is yet to be achieved in the field of multi-class pathology detection.
This means that the diagnosis of the pathological recordings offers no information on the nature of the
pathology, but rather only on its existence or absence. The best accuracies of the solutions proposed by
the authors of [2], [3], [4] and [5] were 84.37%, 94.6%, 91.17% and 95% respectively.

The authors of [6] proposed a solution that achieved 94.4% accuracy based on an Artificial Neural
Network that can distinguish multiple classes using audio and electromyographic (EMG) signals sepa-
rately. However, their implementation did not treat case of the multi-modal approach. Moreover, the
research paper did not specify how the training and test data were split, nor the method of feature
extraction employed (i.e. if the features were extracted from subsections - known as windows - of the
signals or from their entire duration).

2. Problem Formulation

2.1. Theoretical aspects
The vocal tract is the biological structure that genreates speech and can be viewed as a sound source

and a series of filters that can alter the resulting sound together or separately to achieve the desired
phonemes, also known as the sounds that correspond to the letters.

Speech is an aperiodic phoneme sequence that results from rapid changes of the vocal tract, meaning
that its corresponding signal can not be analyzed based on the assumptions that characterize stationary
signals, which are generated by structures that do not change the properties of their filters. Every
pathology that affects the vocal tract will also alter the speech signal in audible or non-audible ways
that exhibit similar pathology-specific patterns. [7]

Speech can therefore be measured at different levels of the vocal tract and this research investigates
the speech signals at the level of the vocal folds in electroglottographic (EGG) form and outside of the
vocal tract in the familiar form of sound.

An EGG signal is recorded by an electroglottograph, a non-invasive device that measures the vocal
fold vibration using two electrodes placed on the neck. [8]

(a) Audio recording example

(b) EGG recording example

Figure 1: Difference between the Audio and EGG recordings

2



2.2. The overall system architecture
The proposed system is a general-purpose flexible audio classifier that enables signal analysis based

on multiple features that can be customized and enhanced depending on the domain of application.
The general structure of the system is presented in figure 2, where the input data is represented by

audio or EGG recordings of speech that are split into partially overlapping windows. The windows are
then saved to the storage of the computer that runs the experiment if there was no prior experiment, in
order to minimize the processing time required for the next experiments. The signal are then processed
by the feature extractors selected by the user who runs the experiment and are similarly saved to speed
up further experiments. The next step in the pipeline is to split the saved features into training and
test sets, where the test dataset will not be used by the neural network to learn and the data from the
two sets are fed into the classifier.

Figure 2: General overview of the system

2.3. Preprocessing and feature extraction
To obtain an accurate classification of the genres within the dataset, the classifier needs to be fed

with relevant features extracted from the input signals or their windowed versions.

The features considered in this work are detailed below.
The Fourier Transform is a mathematical technique that can be used to decompose a signal into

its pure-frequency sine wave components that represent the feature known as frequency spectrum of the
signal. The Fourier Transform offers information about the global spectrum of the signal, meaning that
it will not highlight frequency variations over time. The Inverse Fourier Transform is the mathematical
technique that recovers the original signal from its frequency representation.

The Cepstral representation is an abstract representation of the "spectrum of a signal’s spec-
trum" that is obtained by applying an Inverse Fourier Transform to the logarithm of the spectrum of
a signal. This representation was proven useful in the context of audio analysis due to the logarithmic
nature of the human hearing.

The spectrogram is a time-frequency representation that is used to analyze a signal’s frequency
variation over time. Essentially, a spectrogram is series of Fourier Transforms applied to subsequent
time windows of a signal to capture the frequency spectrum variations of a signal.

The Mel-Frequency Cepstral Coefficients (MFCCs) are a another time-frequency representa-
tion of an abstract "spectrum of a spectrum" of the signal. The MFCCs are obtained by applying a
Discrete Cosine Transform to the Inverse Fourier Transform of the logarithm of a Mel-scaled spectrogram
calculated from the original signal.

The Mel Scale is a logarithmic frequency scale that more closely resembles the frequency behavior
of human hearing.

The Discrete Cosine Transform is a mathematical technique that decomposes digital signals
into cosine components, in a similar manner to the Fourier Transform, but with different properties.
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2.4. Neural Network based classifier
A classifier is represented by an algorithm that is able to categorize input data as two (in the case

of binary classification) or more (in the case of a multi-class problem) classes. Generally, a classification
problem is solved (with limited accuracy) by a convoluted function with no known mathematical formula
to create a general association between the input and the required output. Therefore we need a system
capable of learning the function itself.

An example of such an algorithm is the Artificial Neural Network based classification. An Artificial
Neural Network is a fully connected set of artificial neurons that are hierarhically organized in layers,
meaning that each neuron in a given layer communicates with all the neurons of the previous and
subsequent layer.

Each artificial neuron represents a computational unit which loosely models the behavior of its
biological counterpart by a linear and a non-linear component. The linear component is the sum of all
the inputs from the neurons of the previous layer or the direct inputs if the neuron is part of the input
layer of the network. The non-linear part is represented by a non-linear mathematical function that is
applied to the linear part of the neuron.

Such a classifier requires large amounts of data in order to correctly learn the function that maps
the input to the desired output and therefore, more relevant data that contains new information will
increase the performance of the classifier.

This is the main reason for the simultaneous analysis of both the audio and EGG signals, as the
difference in figure 1 suggests.

The learning process of a neural network is represented by an optimization problem to find a mini-
mum of a loss function that can be regarded as the penalty received by the network for a classification.
Fundamentally, the loss function represents some kind of total difference between the output of the
network and the expected value of its output.

An optimizer is an algorithm that modifies the parameters of the classifier with the aim of minimizing
the penalty received by the neural network for all the classifications done in one epoch of the training
process.

In the context of neural networks, an epoch represents a full pass through the training data examples.

3. Experimental Setup

3.1. Dataset
The Saarbrucken Voice Dataset (SVD) [9] is a set of speech signals recorded in audio or EGG

format. The SVD consists of 869 healthy and 1356 subjects with one or multiple voice pathologies
from the 71 voice disorders in the dataset. For the experiments presented in this work, an excerpt of
three diagnostics was used: Healthy, Cysts and Ventricular Dysphonia. Each class was reduced to 54
recordings of 1 second each that correspond to 6 speakers with 9 utterances each, to avoid an unbalanced
classification task, meaning that all the classes have an equal number of examples to facilitate a learning
process that does not favor any of the diagnostics. The 9 utterances of a subject are the total utterances
that result from the combination of either vowel and intonation detailed in the naming convention below.

The naming convention of each vocal recording respects the following pattern that enables the
proposed system to perform an experiment on a filtered subset of desired vowels and intonations:
speaker_no − V OW_INT (−egg).extension, where "-egg" is optional, V OW ∈ {’i’, ’a’, ’u’}, INT ∈
{’l’, ’n’, ’h’}, where ’h’, ’n’ and ’l’ stand for high, normal and low respectively. Finally, extension can be
either ’.wav’ or ’.egg’ for audio or EGG signals.

For instance, 2−u_h− egg.egg is the naming convention for the recording of the vowel ’u’ that was
pronounced with high intonation by the 2nd subject and recorded in EGG format.

3.2. Audio Signal Analysis
The vocal recordings were divided into 20ms windows that partially overlap, as a means of data

augmentation used to improve the learning of the neural network by essentially "teaching" it to recognize
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parts of the speech signals as speech signals and thus supplement the data used by the neural network
to learn.

The duration of the windows was chosen 20 ms because, during speech, the shape of the vocal tract
remains approximately the same during periods of 20 to 40 ms [10], meaning that the properties of the
resulting signal will also negligibly change during those periods, facilitating its analysis.

Data augmentation and Windowing techniques
In the context of Deep Learning, signal windowing can be used as a means to artificially enlarge the

number of training examples (known as data augmentation) for a neural network in order to achieve a
higher accuracy and reduce the impact of real-life data variability. Another example of data augmenta-
tion is the addition of noise to the input signals.

Data augmentation is the concept of enhancing a dataset based on slightly modified versions of the
data that it already contains, in order to diminish the effect of over-learning the trainig data (also known
as overfitting). The most extreme example of overfitting is when a classifier obtains 100% accuracy on
its training set but has 0% accuracy on the test set or on real-life data, meaning that its classification
function is only useful for a very narrow set of examples.

Figure 3 depicts the most common windowing function types. The rectangular window applies no
change to the signal’s loudness in time, but heavily modifies the frequency spectrum of the analyzed
signal due to its abrupt onset and ending. The Hamming and Hanning window types correspond to
a smoother transition of the time-domain representation of the signal, by reducing the loudness of its
onset and ending.

Figure 3: Commonly used windowing functions

Ideally, for no changes to the frequency spectrum, the central lobe of the windowing function’s
spectrum should be as narrow as possible and the ripples of non-zero frequency should also be as low
as possible to minimize the impact of the windowing on the frequency spectrum of the initial signal. In
reality, both constraints are not possible at the same time and there will be a trade off between the two
constraints, depending on the application - as the above comparison indicates: the rectangular window
has the narrowest central lobe but the most acute ripples, while the other two have a wider main lobe
but milder ripples.

3.3. Proposed Structure of the Neural Netework
Figure 4 depicts the architecture of the neural network used for all the experiments, including the

input and output layers. Every layer’s activation function (except for the output layer) is the Rectified
Linear Unit (or ReLU for short) that outputs the unaltered input if its value is positive or 0 otherwise.
The non-linearity of the output layer was chosen to be the Softmax function that outputs a probability
of the input signal being each pathology as the figure shows. The final classification of the network
will be the most likely diagnosis, in this case "Healthy". ReLU was chosen due to its computational
simplicity and because it facilitates a fast learning process.
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Figure 4: Proposed Architecture of the Network

The ADAM [11] optimizer was chosen for the training process for all the experiments due to its
adaptive learning rate that yields the advantage of a faster learning at the cost of slightly decreased
generalization capacities. Because of this downside, a 50% dropout rate was applied to each layer,
meaning that for every learning epoch, approximately 50% neurons of each layer will be randomly
ignored, thus reducing the network’s overfitting.

The categorical cross-entropy was chosen as the loss function and is computed using the following
formula:

CE = −
C∑
i=1

silog(ŝi), (1)

where C is the number of classes, ŝi is the score of the predicted class and si is the score of the ith class.
The main metric used is the accuracy which can be described as the percentage of true positive

predictions from the total number of predictions.
Figure 5 depicts the overview of the system that was used for the multi-modal approach. The

Clean Dataset stages correspond to a functionality that allows dataset filtering based on the vowels and
intonations of the patients. The datasets used for all the experiments were used entirely, without any
filtering applied.

Figure 5: Multi-modal approach overview

The Audio, EGG and Multi-modal networks were trained for 130, 530 and 530 epochs respectively.

3.4. Performance Evaluation
Audio Format Dataset
Figures 6 and 7 depict the evolution of the training and validation losses and accuracies respectively

for 130 epochs on the audio dataset:
The best model was saved at the epoch with number 117. The best accuracy for the Audio format

dataset was 86%.
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Figure 6: Loss for Audio Dataset

Figure 7: Accuracy evolution for Audio Dataset

EGG Format Dataset
Figures 8 and 9 illustrate the evolution of the accuracies and losses of the training and validation

sets for a duration of 530 epochs on the EGG format dataset:

Figure 8: Loss for EGG Dataset

Figure 9: Accuracy for EGG Dataset

The best model was saved at epoch with number 77. The best accuracy for the EGG format dataset
was 75%.

Multi-modal Dataset
The pipeline for the multi-modal dataset is shown in figure 5. The features were concatenated along

the time axis, with the MFCCs extracted EGG signals after the ones that correspond to the Audio
signals.

Figures 10 and 11 illustrate the evolution of the accuracies and losses of the training and validation
sets for a duration of 530 epochs on the multi-modal dataset:
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Figure 10: Loss for Multi-modal Dataset

Figure 11: Accuracy for Multi-modal Dataset

The best model was saved at epoch with number 80. The best accuracy for the multi-modal dataset
was 90%.

3.5. Real Life Experiment
The author tested the reliability of the proposed system by recording two vocal signals to run a

real-life experiment. The first recording consisted of the utterance of vowel "a" with normal intonation
with one’s vocal folds, while the second recording was a simulation of a dysphonic voice by using the
false vocal chords to utter a hoarse sounding "a" of normal intonation.

The results are shown in figure 12 where a confusion matrix shows that all the sub-windows of
both recordings have been classified as healthy, meaning that the algorithm is robust to fraud. The
folder Cysts contains the dysphonic vocal recording simulation as well. The confusion matrix is a
tabular performance metric that displays the per-class accuracy of the classifier, as well as the wrongly
associated labels with the input examples and the number of such misclassifications.

Figure 12: Live Experiment Results
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This experiment can be run by downloading the code and following the instructions found at the
address in the footnote of this page.

1

4. Conclusions and further development

The 75% accuracy obtained on the dataset by the system trained on recordings of EGG format,
compared to the 86% accuracy of the audio dataset indicates that the use of other features could be
explored to attain an improved performance than the performance obtained with Mel-Frequency Cepstral
Coefficients. Thus, in order to increase the accuracy of the system on signals with different formats than
audio, a method that uses differentiated features for each type of signal might prove beneficial. Moreover,
the fact that the multi-modal dataset approach resulted in greater performance than either previous
methods, separately, is an indicator that the two types of signals contain complementary information
about the pathological nature of the recordings.

Additionally, the implemented algorithm might also prove its uses in applications such as non-invasive
vocal recovery monitoring after surgery by measuring the difference between the neural network’s current
output and a healthy, target output example.

The advantages of the system include ease of use, as patients only have to speak, non-invasivity and
objective diagnosis that is based on vocal parameters.

The obtained results suggest that further development is of interest and can be employed in several
directions.

To further develop the system, data augmentation techniques could prove useful, such as noise
addition or artificial example generation by Generative Adversarial Networks [12]. Noise addition could
prove especially useful given that real-life applications imply audio recordings with consumer-grade
microphones in various environments that likely differ from the equipments and environments used at
the creation of the Saarbrucken Voice Dataset.

Another possible development direction would be the addition of features extracted from EMG
signals to the multi-modal approach or to any of the EGG and Audio approaches to determine whether
a new type of signal would help performance improvements.

1https://drive.google.com/drive/folders/1fKaaZbTVSJtIjPSj_RUyvXSSTiTCv4JH?usp=share_link
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