Date Log
Identification of the potential bioactive peptides in edible bird’s nest
Corresponding Author(s) : Amiza Mat Amin
Carpathian Journal of Food Science and Technology,
Vol. 15 No. 3 (2023): Carpathian Journal of Food Science and Technology
Abstract
The major component in edible bird’s nest (EBN) is protein. Thus, it is a potential source of bioactive peptides. Thus, this study aimed to determine the potential bioactive peptides from proteomic profiles of EBN using BIOPEP database. In this study, a proteomic profiling of soluble EBN proteins was carried out using high sensitivity liquid chromatography tandem mass spectrometry. Five proteins were selected as potential precursors for bioactive peptides which were deleted in malignant brain tumors 1, lysyl oxidase 3, acidic mammalian chitinase, NK-lysin and mucin-5AC for further analysis. It was found that the chosen proteins gave six dominant bioactivities which were angiotensin-converting enzyme (ACE) inhibitor, dipeptidyl peptidase-IV (DPP IV) inhibitor, dipeptidyl peptidaseIII (DPP III) inhibitor, antioxidative, stimulating and renin inhibitor. Furthermore, the most potential bioactive peptides from soluble EBN proteins were angiotensin-converting enzyme (ACE) inhibitor and dipeptidyl peptidase-IV (DPP IV) inhibitor. Meanwhile for in silico proteolysis of EBN proteins using 33 type of enzymes, stem bromelain and pepsin were found to give the highest degree hydrolysis and to produce the highest number of bioactive peptides. Five tripeptides were generated after gastrointestinal digestion simulation for each ACE inhibitory activity, which were IRA, YPG, MKY, IVR and AVL and DPP IV inhibitory peptides that were WRD, WRT, WRS, VPL and APG, respectively. However, all these tripeptides have been reported in previous studies. This study showed that EBN has a promising source of bioactive peptide and in silico approach provide better understanding of theoretical and prediction of functional peptides.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Agirbasli, Z., Cavas, L. (2017). In silico evaluation of bioactive peptides from the green algae Caulerpa. Journal of Applied Phycology, 29(3), 1635–1646. https://doi.org/10.1007/s10811-016-1045-7
- Amiza, M. A., Sai, J. Y., Norizah, M. S. (2014). Optimization of enzymatic hydrolysis conditions on angiotensin converting enzyme (ACE) inhibitory activity from edible bird’s nest. Proceedings of International Conference on Food Innovation 2014 (INNOVA2014). Penang. 27-28 August 2014.
- Aswir, A. R., Nazaimoon, W. (2011). Effect of edible bird’s nest on cell proliferation and tumor necrosis factor- alpha (TNF-α) release in vitro. International Food Research Journal. 18(3), 1123–1127. https://doi.org/10.1007/s10811-016-1045-7
- Bleakley, S., Hayes, M., O’ Shea, N., Gallagher, E., Lafarga, T. (2017). Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods, 6(12), 108. https://doi.org/10.3390/foods6120108
- Boot, R. G., Blommaart, E. F. C., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A., Aerts, J. M. F. G. (2001). Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. Journal of Biological Chemistry, 276(9), 6770–6778. https://doi.org/10.1074/jbc.M009886200
- Bradford, M. M. A. (1976). Rapid and sensitive method for the quantitation Of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
- Cheung, W., Darfler, M. M., Alvarez, H., Hood, B. L., Conrads, T. P., Habbe, N., Krizman, D. B., Mollenhauer, J., Feldmann, G., Maitra, A. (2008). Application of a global proteomic approach to archival precursor lesions: Deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology, 8(6), 608-616. https://doi.org/10.1159/000161012
- Diaz, J. R., Ramírez, C. A., Nocua, P. A., Guzman, F., Requena, J. M., Puerta, C. J. (2018). Dipeptidyl peptidase 3, a novel protease from Leishmania braziliensis. PLoS ONE, 13(1), 1–18. https://doi.org/10.1371/journal.pone.0190618
- Dziuba, J., Miklewicz, M., Iwaniak, A., Darewicz, M. Minkiewicz, P. (2004). Bioinformatic aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Alimentaria, 33(3), 227–235. https://doi.org/10.1556/aalim.33.2004.3.3
- Garcia-vaquero, M., Mora, L., Hayes, M. (2019). In vitro and in silico approaches to generating and identifying angiotensinconverting enzyme I inhibitory peptides from green macroalga. Marine Drugs, 17(4), 204. https://doi.org/10.3390/md17040204
- Garg, S., Apostolopoulos, V., Nurgali, K., Mishra, V. K. (2018). Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. Journal of Functional Foods, 41, 34–40. https://doi.org/10.1016/j.jff.2017.12.022
- Hall, F., Johnson, P. E., Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chemistry, 262, 39–47. https://doi.org/10.1016/j.foodchem.2018.04.058
- Herchenhan, A., Uhlenbrock, F., Eliasson, P., Weis, M., Eyre, D., Kadler, K. E., Magnusson, S. P., Kjaer, M. (2015). Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. Journal of Biological Chemistry, 290(26), 16440–16450. https://doi.org/10.1074/jbc.M115.641670
- Hildebrandt, M., Reutter, W., Petra, A., Matthias, R., Klapp, B. F. (2000). A guardian angel: The involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clinical Science, 99(2), 93–104. https://doi.org/10.1042/CS19990368
- Huang, B-B, Lin, H. C., Chang, Y. W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, 629–640. https://doi.org/10.1016/j.jff.2015.09.065
- Iwaniak, A., Dziuba, J., Miklewicz, M. (2005). The BIOPEP database - a tool for the in silico method of classification of food proteins as the source of peptides with antihypertensive activity. Acta Alimentaria, 34(4), 417–425. https://doi.org/10.1556/AAlim.34.2005.4.9
- Ghassem, M., Arihara, K., Mohammadi. S., Sani, N.A., Babji, A.S. (2017). Identification of two novel antioxidant peptides from edible bird nest (Aerodramus fuciphagus) protein hydrolysate. Food and Function, 8(5), 2046-2052. https://doi.org/10.1039/c6fo01615d
- Hatanaka, T., Inoue Y., Arima, J., Kumagai, Y., Usuki, H., Kawakami, K., Kimura, M., Mukaihara, T. (2012). Production of dipeptidyl peptidase IV inhibitory peptides from defated rice bran. Food Chemistry, 134, 797-802. https://doi.org/10.1016/j.foodchem.2012.02.183
- Kinter, M., Sherman, N.E. (2005) Protein sequencing and identification using tandem mass spectrometry. Volume 9. John Wiley & Sons Inc. https://doi.org/10.1002/0471721980
- Kong, H., Wong, K., Lo, S. C. (2016). Identification of peptides released from hot water insoluble fraction of edible bird’s nest under simulated gastro-intestinal conditions. Food Research International, 85, 19–25. https://doi.org/10.1016/j.foodres.2016.04.002
- Kumar, P., Reithofer, V., Reisinger, M., Wallner, S., Pavkov-Keller, T., Macheroux, P., Gruber, K. (2016). Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep23787
- Kwan, S. H., Ismail, M. N. (2018). Identification of the potential bio-active proteins associated with wound healing properties in snakehead fish (Channa striata) mucus. Current Proteomics, 15(4), 299–312. https://doi.org/10.2174/1570164615666180717143418
- Lacroix, I. M. E., Li-chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4(2), 403–422. https://doi.org/10.1016/j.jff.2012.01.008
- Lan, V. T. T., Ito, K., Ito, S., Kawarasaki, Y. (2014). Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV. Peptides, 54, 166–170. https://doi.org/10.1016/j.peptides.2014.01.027
- Lee, M. O., Jang, H. J., Han, J. Y., Womack, J. E. (2014). Chicken NK-lysin is an alphahelical cationic peptide that exerts its antibacterial activity through damage of bacterial cell membranes. Poultry Science, 93(4), 864–870. https://doi.org/10.3382/ps.2013-03670
- Lee, S. H., Qian, Z. J., Kim, S. K. (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118(1), 96–102. https://doi.org/10.1016/j.foodchem.2009.04.086
- Lee, S. Y., Hur, S. J. (2017). Angiotensin converting enzyme inhibitory and antioxidant activities of enzymatic hydrolysates of Korean native cattle (Hanwoo) myofibrillar protein. BioMed Research International, 2017, 5274637. https://doi.org/10.1155/2017/5274637
- Ligtenberg, A. J. M., Karlsson, N. G., Veerman, E. C. I. (2010). Deleted in malignant brain tumors-1 protein (DMBT1): A pattern recognition receptor with multiple binding sites. International Journal of Molecular Sciences, 11(12), 5212–5233. https://doi.org/10.3390/ijms1112521
- Liu, X., Lai, X., Zhang, S., Huang, X., Lan, Q., Li, Y., Li, B., Chen, W., Zhang, Q., Hong, D., Yang, G. (2012). Proteomic profile of edible bird’s nest proteins. Journal of Agricultural and Food Chemistry, 60(51), 12477–12481. https://doi.org/10.1021/jf303533p
- Ma, F., Liu, D. (2012). Sketch of the edible bird’s nest and its importance bioactivities. Food Research International. 48(2), 559-567. https://doi.org/10.1016/j.foodres.2012.06.001
- Madsen, J., Sorensen, G. L., Nielsen, O., Tornøe, I., Thim, L., Fenger, C., Mollenhauer, J., Holmskov, U. (2013). A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLoS ONE, 8(5), 1–11. https://doi.org/10.1371/journal.pone.0064441
- Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., Doyen, A. (2018).Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013
- Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the east”. Food Research International. 38 (10), 1125-1134. https://doi.org/10.1016/j.foodres.2005.02.008
- Meng, Z., Xin, L., Han, X., Zhang, L., Gong, P., Cheng, D., Lin, K. (2018). Yak milk casein as potential precursor of angiotensin Iconverting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry, 254, 340–347. https://doi.org/10.1016/j.foodchem.2018.02.051
- Miner-Williams, W., Moughan, P. J., Fuller, M. F. (2009). Methods for mucin analysis: a comparative study. Journal of Agricultural and Food Chemistry, 57(14), 6029–6035. https://doi.org/10.1021/jf901036r
- Müller, H., Renner, M., Bergmann, F., Mechtersheimer, G., Weiss, C., Poeschl, J., Helmke, B. M., Mollenhauer, J. (2013). Cardiac amyloidosis induces up-regulation of Deleted in Malignant Brain Tumors 1 (DMBT1). Cardiovascular Pathology, 22(3), 195–202. https://doi.org/10.1016/j.carpath.2012.10.006
- Nongonierma, A. B., Fitzgerald, R. J. (2014). An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165, 489-498. https://doi.org/10.1016/j.foodchem.2014.05.090
- Nur ’Aliah, D., Ghassem, M., See S. F. & Salam B. A. (2016). Functional bioactive compounds from freshwater fish, edible birdnest, marine seaweed and phytochemical. American Journal of Food and Nutrition, 6(2), 33–38. https://doi.org/10.5251/ajfn.2016.6.2.33.38
- Ohno, M., Kimura, M., Miyazaki, H., Okawa, K., Onuki, R., Nemoto, C., Tabata, E., Wakita, S., Kashimura, A., Sakaguchi, M., Sugahara, Y., Nukina, N., Bauer, P. O., Oyama, F. (2016). Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Scientific Reports, 6, 1-9. https://doi.org/10.1038/srep37756
- Quek, M.C., Chin, N.L., Yusof, Y.A., Tan, S.W., Law, C.L. (2015). Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest. Information Processing in Agriculture, 2(1), 1-5. https://doi.org/10.1016/j.inpa.2014.12.002
- Rawendra, R. D. S., Aisha, Chen, S. H., Chang, C. I., Shih, W. L., Huang, T. C., Liao, M. H., Hsu, J. L. (2014). Isolation and characterization of a novel angiotensinconverting enzyme-inhibitory tripeptide from enzymatic hydrolysis of soft-shelled turtle (Pelodiscus sinensis) egg white: In vitro, in vivo, and in silico study. Journal of Agricultural and Food Chemistry, 62(50), 12178–12185. https://doi.org/10.1021/jf504734g
- Ren, S., Chen, X., Jiang, L., Zhu, B., Jiang, Q., Xi, X. (2016). Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia. Biochemical and Biophysical Research Communications, 478(3), 1344–1349. https://doi.org/10.1016/j.bbrc.2016.08.125
- Rosell-García, T., Paradela, A., Bravo, G., Dupont, L., Bekhouche, M., Colige, A., Rodriguez-Pascual, F. (2019). Differential cleavage of lysyl oxidase by the metalloproteinases BMP1 and ADAMTS2/14 regulates collagen binding through a tyrosine sulfate domain. Journal of Biological Chemistry, 294(29), 11087-11100. https://doi.org/10.1074/jbc.RA119.007806
- Saengkrajang, W., Matan, N., Matan, N. (2013). Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. Journal of Food Composition and Analysis, 31(1), 41-45. https://doi.org/10.1016/j.jcfa.2013.05.001
- Shahidi, F., Zhong, Y. (2008). Bioactive peptides. Journal of AOAC International, 91(4), 914-931. https://doi.org/10.1093/jaoac/91.4.914
- Singh, T. P., Siddiqi, R. A., Sogi, D. S. (2019). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT-Food Science and Technology, 99, 77–83. https://doi.org/10.1016/j.lwt.2018.09.014
- Syarmila, E., Aliah, N., Nadia, N., Akbar, H. (2018). Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal. 25(5), 1936–1941.
- Vukic, V. R., Vukic, D. V., Milanovic, S. D., Ilicic, M. D., Kanuric, K. G., Johnson, M. S. (2017). In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I–converting enzyme inhibitory activity. Nutrition Research, 46, 22–30. https://doi.org/10.1016/j.nutres.2017.07.009
- Wang, Q., Bao, B., Wang, Y., Peatman, E., Liu, Z. (2006). Characterization of a NK-lysin antimicrobial peptide gene from channel catfish. Fish Shellfish Immunology, 20, 419–426. https://doi.org/10.1016/j.fsi.2005.05.005
- Wong, Z. C. F., Chan, G. K. L., Wu, L., Lam, H. H. N., Yao, P., Dong, T. T. X., Tsim, K. W. K. (2018). A comprehensive proteomics study on edible bird’s nest using new monoclonal antibody approach and application in quality control. Journal of Food Composition and Analysis, 66, 145–151. https://doi.org/10.1016/j.jfca.2017.12.014
- Wu, J., Aluko, R. E., Nakai, S. (2006). Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues. QSAR and Combinatorial Science, 25(10), 873–880. https://doi.org/10.1021/jf051263l
- Wu, Y. J., Chen, Y., Wang, B,, Bai, L. Q., Wu, R. H., Ge, Y. Q., Yuan, F. (2010). Application of SYBR green PCR and 2DGE methods to authenticate edible bird’s nest food. Food Research. International. 43(8), 2020-2026. https://doi.org/10.1016/j.foodres.2010.05.020
- Zhang, G., C. R. Ross, Blecha, F. (2000). Porcine antimicrobial peptides: New prospects for ancient molecules of host defense. Veterinary Residue. 31, 277–296. https://doi.org/10.1051/vetres:2000121
- Zukefli, S. N., Chua, L. S., Rahmat, Z. (2017). Protein extraction and identification by gel electrophoresis and mass spectrometry from edible bird’s nest samples. Food Analytical Methods, 10(2), 387–398. https://doi.org/10.1007/s12161-016-0590-7.
References
Agirbasli, Z., Cavas, L. (2017). In silico evaluation of bioactive peptides from the green algae Caulerpa. Journal of Applied Phycology, 29(3), 1635–1646. https://doi.org/10.1007/s10811-016-1045-7
Amiza, M. A., Sai, J. Y., Norizah, M. S. (2014). Optimization of enzymatic hydrolysis conditions on angiotensin converting enzyme (ACE) inhibitory activity from edible bird’s nest. Proceedings of International Conference on Food Innovation 2014 (INNOVA2014). Penang. 27-28 August 2014.
Aswir, A. R., Nazaimoon, W. (2011). Effect of edible bird’s nest on cell proliferation and tumor necrosis factor- alpha (TNF-α) release in vitro. International Food Research Journal. 18(3), 1123–1127. https://doi.org/10.1007/s10811-016-1045-7
Bleakley, S., Hayes, M., O’ Shea, N., Gallagher, E., Lafarga, T. (2017). Predicted release and analysis of novel ACE-I, renin, and DPP-IV inhibitory peptides from common oat (Avena sativa) protein hydrolysates using in silico analysis. Foods, 6(12), 108. https://doi.org/10.3390/foods6120108
Boot, R. G., Blommaart, E. F. C., Swart, E., Ghauharali-van der Vlugt, K., Bijl, N., Moe, C., Place, A., Aerts, J. M. F. G. (2001). Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. Journal of Biological Chemistry, 276(9), 6770–6778. https://doi.org/10.1074/jbc.M009886200
Bradford, M. M. A. (1976). Rapid and sensitive method for the quantitation Of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Cheung, W., Darfler, M. M., Alvarez, H., Hood, B. L., Conrads, T. P., Habbe, N., Krizman, D. B., Mollenhauer, J., Feldmann, G., Maitra, A. (2008). Application of a global proteomic approach to archival precursor lesions: Deleted in malignant brain tumors 1 and tissue transglutaminase 2 are upregulated in pancreatic cancer precursors. Pancreatology, 8(6), 608-616. https://doi.org/10.1159/000161012
Diaz, J. R., Ramírez, C. A., Nocua, P. A., Guzman, F., Requena, J. M., Puerta, C. J. (2018). Dipeptidyl peptidase 3, a novel protease from Leishmania braziliensis. PLoS ONE, 13(1), 1–18. https://doi.org/10.1371/journal.pone.0190618
Dziuba, J., Miklewicz, M., Iwaniak, A., Darewicz, M. Minkiewicz, P. (2004). Bioinformatic aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Alimentaria, 33(3), 227–235. https://doi.org/10.1556/aalim.33.2004.3.3
Garcia-vaquero, M., Mora, L., Hayes, M. (2019). In vitro and in silico approaches to generating and identifying angiotensinconverting enzyme I inhibitory peptides from green macroalga. Marine Drugs, 17(4), 204. https://doi.org/10.3390/md17040204
Garg, S., Apostolopoulos, V., Nurgali, K., Mishra, V. K. (2018). Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. Journal of Functional Foods, 41, 34–40. https://doi.org/10.1016/j.jff.2017.12.022
Hall, F., Johnson, P. E., Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chemistry, 262, 39–47. https://doi.org/10.1016/j.foodchem.2018.04.058
Herchenhan, A., Uhlenbrock, F., Eliasson, P., Weis, M., Eyre, D., Kadler, K. E., Magnusson, S. P., Kjaer, M. (2015). Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. Journal of Biological Chemistry, 290(26), 16440–16450. https://doi.org/10.1074/jbc.M115.641670
Hildebrandt, M., Reutter, W., Petra, A., Matthias, R., Klapp, B. F. (2000). A guardian angel: The involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clinical Science, 99(2), 93–104. https://doi.org/10.1042/CS19990368
Huang, B-B, Lin, H. C., Chang, Y. W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, 629–640. https://doi.org/10.1016/j.jff.2015.09.065
Iwaniak, A., Dziuba, J., Miklewicz, M. (2005). The BIOPEP database - a tool for the in silico method of classification of food proteins as the source of peptides with antihypertensive activity. Acta Alimentaria, 34(4), 417–425. https://doi.org/10.1556/AAlim.34.2005.4.9
Ghassem, M., Arihara, K., Mohammadi. S., Sani, N.A., Babji, A.S. (2017). Identification of two novel antioxidant peptides from edible bird nest (Aerodramus fuciphagus) protein hydrolysate. Food and Function, 8(5), 2046-2052. https://doi.org/10.1039/c6fo01615d
Hatanaka, T., Inoue Y., Arima, J., Kumagai, Y., Usuki, H., Kawakami, K., Kimura, M., Mukaihara, T. (2012). Production of dipeptidyl peptidase IV inhibitory peptides from defated rice bran. Food Chemistry, 134, 797-802. https://doi.org/10.1016/j.foodchem.2012.02.183
Kinter, M., Sherman, N.E. (2005) Protein sequencing and identification using tandem mass spectrometry. Volume 9. John Wiley & Sons Inc. https://doi.org/10.1002/0471721980
Kong, H., Wong, K., Lo, S. C. (2016). Identification of peptides released from hot water insoluble fraction of edible bird’s nest under simulated gastro-intestinal conditions. Food Research International, 85, 19–25. https://doi.org/10.1016/j.foodres.2016.04.002
Kumar, P., Reithofer, V., Reisinger, M., Wallner, S., Pavkov-Keller, T., Macheroux, P., Gruber, K. (2016). Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep23787
Kwan, S. H., Ismail, M. N. (2018). Identification of the potential bio-active proteins associated with wound healing properties in snakehead fish (Channa striata) mucus. Current Proteomics, 15(4), 299–312. https://doi.org/10.2174/1570164615666180717143418
Lacroix, I. M. E., Li-chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4(2), 403–422. https://doi.org/10.1016/j.jff.2012.01.008
Lan, V. T. T., Ito, K., Ito, S., Kawarasaki, Y. (2014). Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV. Peptides, 54, 166–170. https://doi.org/10.1016/j.peptides.2014.01.027
Lee, M. O., Jang, H. J., Han, J. Y., Womack, J. E. (2014). Chicken NK-lysin is an alphahelical cationic peptide that exerts its antibacterial activity through damage of bacterial cell membranes. Poultry Science, 93(4), 864–870. https://doi.org/10.3382/ps.2013-03670
Lee, S. H., Qian, Z. J., Kim, S. K. (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118(1), 96–102. https://doi.org/10.1016/j.foodchem.2009.04.086
Lee, S. Y., Hur, S. J. (2017). Angiotensin converting enzyme inhibitory and antioxidant activities of enzymatic hydrolysates of Korean native cattle (Hanwoo) myofibrillar protein. BioMed Research International, 2017, 5274637. https://doi.org/10.1155/2017/5274637
Ligtenberg, A. J. M., Karlsson, N. G., Veerman, E. C. I. (2010). Deleted in malignant brain tumors-1 protein (DMBT1): A pattern recognition receptor with multiple binding sites. International Journal of Molecular Sciences, 11(12), 5212–5233. https://doi.org/10.3390/ijms1112521
Liu, X., Lai, X., Zhang, S., Huang, X., Lan, Q., Li, Y., Li, B., Chen, W., Zhang, Q., Hong, D., Yang, G. (2012). Proteomic profile of edible bird’s nest proteins. Journal of Agricultural and Food Chemistry, 60(51), 12477–12481. https://doi.org/10.1021/jf303533p
Ma, F., Liu, D. (2012). Sketch of the edible bird’s nest and its importance bioactivities. Food Research International. 48(2), 559-567. https://doi.org/10.1016/j.foodres.2012.06.001
Madsen, J., Sorensen, G. L., Nielsen, O., Tornøe, I., Thim, L., Fenger, C., Mollenhauer, J., Holmskov, U. (2013). A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLoS ONE, 8(5), 1–11. https://doi.org/10.1371/journal.pone.0064441
Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., Doyen, A. (2018).Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013
Marcone, M. F. (2005). Characterization of the edible bird’s nest the “Caviar of the east”. Food Research International. 38 (10), 1125-1134. https://doi.org/10.1016/j.foodres.2005.02.008
Meng, Z., Xin, L., Han, X., Zhang, L., Gong, P., Cheng, D., Lin, K. (2018). Yak milk casein as potential precursor of angiotensin Iconverting enzyme inhibitory peptides based on in silico proteolysis. Food Chemistry, 254, 340–347. https://doi.org/10.1016/j.foodchem.2018.02.051
Miner-Williams, W., Moughan, P. J., Fuller, M. F. (2009). Methods for mucin analysis: a comparative study. Journal of Agricultural and Food Chemistry, 57(14), 6029–6035. https://doi.org/10.1021/jf901036r
Müller, H., Renner, M., Bergmann, F., Mechtersheimer, G., Weiss, C., Poeschl, J., Helmke, B. M., Mollenhauer, J. (2013). Cardiac amyloidosis induces up-regulation of Deleted in Malignant Brain Tumors 1 (DMBT1). Cardiovascular Pathology, 22(3), 195–202. https://doi.org/10.1016/j.carpath.2012.10.006
Nongonierma, A. B., Fitzgerald, R. J. (2014). An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chemistry, 165, 489-498. https://doi.org/10.1016/j.foodchem.2014.05.090
Nur ’Aliah, D., Ghassem, M., See S. F. & Salam B. A. (2016). Functional bioactive compounds from freshwater fish, edible birdnest, marine seaweed and phytochemical. American Journal of Food and Nutrition, 6(2), 33–38. https://doi.org/10.5251/ajfn.2016.6.2.33.38
Ohno, M., Kimura, M., Miyazaki, H., Okawa, K., Onuki, R., Nemoto, C., Tabata, E., Wakita, S., Kashimura, A., Sakaguchi, M., Sugahara, Y., Nukina, N., Bauer, P. O., Oyama, F. (2016). Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Scientific Reports, 6, 1-9. https://doi.org/10.1038/srep37756
Quek, M.C., Chin, N.L., Yusof, Y.A., Tan, S.W., Law, C.L. (2015). Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest. Information Processing in Agriculture, 2(1), 1-5. https://doi.org/10.1016/j.inpa.2014.12.002
Rawendra, R. D. S., Aisha, Chen, S. H., Chang, C. I., Shih, W. L., Huang, T. C., Liao, M. H., Hsu, J. L. (2014). Isolation and characterization of a novel angiotensinconverting enzyme-inhibitory tripeptide from enzymatic hydrolysis of soft-shelled turtle (Pelodiscus sinensis) egg white: In vitro, in vivo, and in silico study. Journal of Agricultural and Food Chemistry, 62(50), 12178–12185. https://doi.org/10.1021/jf504734g
Ren, S., Chen, X., Jiang, L., Zhu, B., Jiang, Q., Xi, X. (2016). Deleted in malignant brain tumors 1 protein is a potential biomarker of acute respiratory distress syndrome induced by pneumonia. Biochemical and Biophysical Research Communications, 478(3), 1344–1349. https://doi.org/10.1016/j.bbrc.2016.08.125
Rosell-García, T., Paradela, A., Bravo, G., Dupont, L., Bekhouche, M., Colige, A., Rodriguez-Pascual, F. (2019). Differential cleavage of lysyl oxidase by the metalloproteinases BMP1 and ADAMTS2/14 regulates collagen binding through a tyrosine sulfate domain. Journal of Biological Chemistry, 294(29), 11087-11100. https://doi.org/10.1074/jbc.RA119.007806
Saengkrajang, W., Matan, N., Matan, N. (2013). Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. Journal of Food Composition and Analysis, 31(1), 41-45. https://doi.org/10.1016/j.jcfa.2013.05.001
Shahidi, F., Zhong, Y. (2008). Bioactive peptides. Journal of AOAC International, 91(4), 914-931. https://doi.org/10.1093/jaoac/91.4.914
Singh, T. P., Siddiqi, R. A., Sogi, D. S. (2019). Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT-Food Science and Technology, 99, 77–83. https://doi.org/10.1016/j.lwt.2018.09.014
Syarmila, E., Aliah, N., Nadia, N., Akbar, H. (2018). Assessment on bioactive components of hydrolysed edible bird nest. International Food Research Journal. 25(5), 1936–1941.
Vukic, V. R., Vukic, D. V., Milanovic, S. D., Ilicic, M. D., Kanuric, K. G., Johnson, M. S. (2017). In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I–converting enzyme inhibitory activity. Nutrition Research, 46, 22–30. https://doi.org/10.1016/j.nutres.2017.07.009
Wang, Q., Bao, B., Wang, Y., Peatman, E., Liu, Z. (2006). Characterization of a NK-lysin antimicrobial peptide gene from channel catfish. Fish Shellfish Immunology, 20, 419–426. https://doi.org/10.1016/j.fsi.2005.05.005
Wong, Z. C. F., Chan, G. K. L., Wu, L., Lam, H. H. N., Yao, P., Dong, T. T. X., Tsim, K. W. K. (2018). A comprehensive proteomics study on edible bird’s nest using new monoclonal antibody approach and application in quality control. Journal of Food Composition and Analysis, 66, 145–151. https://doi.org/10.1016/j.jfca.2017.12.014
Wu, J., Aluko, R. E., Nakai, S. (2006). Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues. QSAR and Combinatorial Science, 25(10), 873–880. https://doi.org/10.1021/jf051263l
Wu, Y. J., Chen, Y., Wang, B,, Bai, L. Q., Wu, R. H., Ge, Y. Q., Yuan, F. (2010). Application of SYBR green PCR and 2DGE methods to authenticate edible bird’s nest food. Food Research. International. 43(8), 2020-2026. https://doi.org/10.1016/j.foodres.2010.05.020
Zhang, G., C. R. Ross, Blecha, F. (2000). Porcine antimicrobial peptides: New prospects for ancient molecules of host defense. Veterinary Residue. 31, 277–296. https://doi.org/10.1051/vetres:2000121
Zukefli, S. N., Chua, L. S., Rahmat, Z. (2017). Protein extraction and identification by gel electrophoresis and mass spectrometry from edible bird’s nest samples. Food Analytical Methods, 10(2), 387–398. https://doi.org/10.1007/s12161-016-0590-7.